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Abstract. Free vibration analysis of beams on the elastic foundation is necessary for an optimal design in engineer-
ing applications, especially in the fields of transportation systems. This paper analyzes the influence of the foundation
parameters and the boundary conditions configuration in the dynamic response of Euler-Bernoulli beam on Pasternak
foundation. A finite element solution is developed and compared with the analytic solution to verify the reliability of the
method in this kind of problem. The results showed that Pasternak foundation increases the frequency parameters of the
beam. Also, the presence of the foundation reduces the normal mode amplitude and the clamped-free case is the most
affected by the presence of a Pasternak foundation.

Keywords: Euler-Bernoulli Beam Theory, Finite Element Method, Elastic Foundation, Free Vibration Analysis, Pasternak
Foundation Model.

1. INTRODUCTION

The response of the soil-structure system represents one of the major problems encountered in structural dynamic due
to its intrinsic mathematical complexity. The search for a physically consistent model that gives a reliable information for
the soil-structure interaction has been the greatest challenge of the researches through the years.

To comprehend the nature of the soil-structure interrelationship is fundamental to consider the mechanical behavior of
beam, the behavior of the soil subgrade as well as the interaction between them. In addition, the inability in determining
all input parameters of soil media is a determinant factor in the understanding of its behavior, since it presents heteroge-
neous, anisotropic and nonlinear characteristics. In this context, the mechanical model, which consider the soil-structure
interaction as a beam on elastic foundation, emerge as an alternative widely used in the design of structures.

The main scope of mechanical approach bases in the Winkler model, which represent the soil media as a system of
closely spaced, discrete, linearly elastic springs and the force linearly proportional to the beam displacement (Selvadurai,
1979). However, Winkler model is a crude approximation of the true behavior as it is not capable of modelling the cohesion
of the soil. To overcome this limitation, many idealized models, which include the effect of continuity and cohesion of
the soil, were developed (Filonenko-Borodich, 1940; Hetenyi, 1946; Pasternak, 1954; Kerr, 1965). The Pasternak model
gives a more accurate response of the soil media since it considers the existence of shear interaction among the springs
(Dutta and Roy, 2002). This model is the most used as it can simulate a large variety of types of soil, representing a
generalized foundation (Kerr, 1964).

Concerning the analysis of the mechanical behavior of the beam, the so-called classical Euler-Bernoulli is adequate
for slender beams at lower modes of vibrations. In this theory, straight and normal lines remain the straight and normal
after deformation. Although disregarding the effect of shear deformation and the rotatory inertia factors, predicted in Tim-
oshenko beam theory, the Euler-Bernoulli beam theory presents good accuracy for most of the engineering applications
(Fernandes et al., 2016).

Several papers concerned investigations this field. Zhaohua and Cook (1983) developed two kinds of finite elements
to analyze a Euler-Bernoulli beam on one- and two-parameter foundation and verified the accuracy of them to the exact
solution. De Rosa and Maurizi (1998) developed the analytic solution for the free vibration frequencies of a Euler-
Bernoulli beam on Pasternak foundation in the presence of flexible ends and of a concentrated mass at an arbitrary
position at its span. Ho and Chen (1998) studied the free and forced response of non-uniform Euler-Bernoulli beams
resting on non-homogeneous Winkler foundation. Morfidis and Avramidis (2002) developed a finite element for the
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analysis of reinforced concrete and steel structures. Kumar and Reddy (2016) analyzed the free torsional vibrations of
doubly symmetric thin-walled beams of open section and resting on Winkler and Pasternak foundations.

The aim of this paper is to analyze the effect of the Pasternak foundation in the dynamic response of an Euler-Bernoulli
beam. A finite element is developed and compared with the analytic solution. Several numerical examples presents the
influence of the Pasternak foundation on the free vibration of a Euler-Bernoulli beam for various boundary conditions,
and foundation elastic and shear layer stiffness.

2. CLASSIC THEORY

Figure 1 illustrates the system of a uniform Euler-Bernoulli beam resting on a Pasternak foundation. The potential
energy of the beam-foundation system is given by (Soares and Hoefel, 2015):

U =
1

2

∫ L

0

EI

(
∂2ν(x, t)

∂x2

)2

dx+
1

2

∫ L

0

kf (ν (x, t))
2
dx+

1

2

∫ L

0

Gp

(
∂ν (x, t)

∂x

)2

dx, (1)

where L is the length of beam, I , the moment of inertia of cross section, E, the modulus of elasticity, kf the foundation
elastic stiffness coefficient, Gp the shear layer stiffness, and ν(x, t) is the transverse deflection at the axial location x and
time t.

Considering the inertia of translation, the kinetic energy is given by:

T =
1

2

∫ L

0

ρA

(
∂ν(x, t)

∂t

)2

dx, (2)

where ρ is the mass per unit volume and A is the cross-sectional area. The equation of motion can be obtained using
Hamilton’s principle:∫ t2

t1

δ(T − U)dt+

∫ t2

t1

δWncdt = 0, (3)

where δWnc is the virtual work due non conservative forces, t1 and t2 are times at which the configuration of the system is
known and δ is the symbol denoting virtual change. Substituting Eqs. (1) and (2) on the Eq. (3), after some manipulations,
one can obtain the differential equation for free vibration response:

EI
∂4ν (x, t)

∂x4
+ ρA

∂2ν (x, t)

∂t2
+ kfν (x, t)−Gp

∂2ν (x, t)

∂x2
= 0. (4)

L

y

Gp

kf

x

Figure 1. A beam on a Pasternak foundation.

Assuming that the beam is excited harmonically with an angular frequency ω and:

ν(x, t) = V (x) · eiωt, ξ = x/L, and b2 =
ρAL4

EI
ω2, (5)

where i =
√
−1, ξ is the non-dimensional length of the beam, V (x) is the normal function of ν(x, t) and b is the frequency

parameter. Substituting the relations presented in Eqs. (5) into Eq. (4) and omitting the common term eiωt we obtain (De
Rosa and Maurizi, 1998):

d4V (ξ)

dξ4
− p2 d

2V (ξ)

dξ2
+ (e2 − b2)V (ξ) = 0, (6)
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where e and p are the coefficients related with the elastic and the shear layer stiffness, respectively, given ’1234590by:

e2 =
kfL

4

EI
and p2 =

GpL
2

EI
. (7)

The solution of the O.D.E. of Eq. (6) leads to the displacement being expressed in trigonometric and hyperbolic
functions:

V (ξ) = C1 cosh(αξ) + C2 sinh(αξ) + C3 cos(βξ) + C4 sin(βξ), (8)

where:

α =

√
2

2

√
p2 +

√
p4 − 4(e2 − b2), (9)

β =

√
2

2

√
−p2 +

√
p4 − 4(e2 − b2), (10)

and C is a constant.
Equations 6 shows that the beam-foundation theory represents a generalization of the beam theory. Disregarding the

parameters e and p, the solution regress to the solution of a beam without foundation. Also, the Pasternak foundation
theory is a higher generalization as it includes the solution for Winkler when p = 0.

3. FINITE ELEMENT FORMULATION

Consider a uniform Euler-Bernoulli beam element on Pasternak Foundation as shown in Fig. 2. The beam element
consists of two nodes and each node has two degrees of freedom: V , the total deflection, and Ψ, the slope due to bending.

Gp

kf

b b

Vi Vj

i j

Ψi
Ψj

le

x, ξ

ξi = −1 ξj = 1

Figure 2. Beam on Pasternak foundation element

Solving the homogeneous form of Euler-Bernoulli beam static equations, one can obtain a cubic displacement func-
tions as follows (Zhaohua and Cook, 1983):

Vi(ξ) =

3∑
i=0

λiξ
i, (11)

where λi is a constant.
Using the non-dimension coordinate, ξ, and element length, le, the matrix form of the displacement can be written as:

V = [N(ξ) ]{v }e, (12)

where [N(ξ) ] is the shape functions and {v }e is the vector of nodal coordinates. The subscript e represents expressions
for a single element.

Therefore, the shape functions in Eq. (12) can be expressed as:

Ni(ξ) =
1

4


2− 3ξ + ξ3

(le/2) [1− ξ − ξ2 + ξ3]
2 + 3ξ − ξ3

(le/2) [−1− ξ + ξ2 + ξ3]

 . (13)
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Thus, considering the foundation and the beam, the potential and kinetic energy for an element length le are given by:

Ue =
1

2

2EI

le

∫ 1

−1

(
∂2V

∂ξ2

)2

dξ +
1

2

kf le
2

∫ 1

−1
V 2dξ +

1

2

2Gp

le

∫ 1

−1

(
∂V

∂ξ

)2

dξ and (14)

Te =
1

2

ρAle
2

∫ 1

−1

(
∂V

∂t

)2

dξ. (15)

Substituting the displacement expression, Eq. (12), into the potential energy, Eq. (14), gives:

Ue =
1

2
{v}Te

[
2EI

le

∫ 1

−1
[N(ξ)

′′
]T [N(ξ)

′′
]dξ

]
{v}e + (16)

1

2
{v}Te

[
kf le

2

∫ 1

−1
[N(ξ)]

T
[N(ξ)] dξ +

2Gp

le

∫ 1

−1

[
N(ξ)

′]T [
N(ξ)

′]
dξ

]
{v}e,

where [N(ξ)
′
] = [∂N(ξ)/∂ξ]. Therefore, the element stiffness matrix is given by:

[ke] =

[
2EI

le

∫ 1

−1
[N(ξ)

′′
]T [N(ξ)

′′
]dξ + (17)

kf le
2

∫ 1

−1
[N(ξ)]

T
[N(ξ)] dξ +

2Gp

le

∫ 1

−1

[
N(ξ)

′]T [
N(ξ)

′]
dξ

]
. (18)

Substituting the displacement expression, Eq. (12), into the kinetic energy, Eq. (15), gives:

Te =
1

2
{v̇}Te

[
ρAle

2

∫ 1

−1
[N(ξ)]T [N(ξ)]dξ

]
{v̇}e, (19)

hence, the element mass matrix is given by:

[me] =

[
ρAle

2

∫ 1

−1
[N(ξ)]T [N(ξ)]dξ

]
. (20)

4. NUMERICAL RESULTS

To show the effects of the foundation parameters on the natural frequencies of a beam on elastic foundation, some
numerical examples are presented. The same parameter values are used for all examples, except when specified. Consider
a beam of uniform cross-section, such that E = 210GPa, ρ = 7850 kg/m3, h/L = 0.05m and L = 2m.

Table 1. Comparison table for the frequency parameters of analytic and FEM analyses.

Mode
Number

Without
Foundation

Winkler Pasternak

Analytic FEM-30e FEM-70e Analytic FEM-30e FEM-70e

1 9.870 11.064 11.064 11.064 19.213 19.213 19.213
2 39.478 39.794 39.794 39.794 50.700 50.700 50.700
3 88.826 88.967 88.968 88.967 100.677 100.677 100.677
4 157.914 157.993 157.996 157.993 170.028 170.031 170.028
5 246.740 246.791 246.804 246.791 258.987 258.999 258.987

To analyze the influence a foundation in the frequency parameters, Table 1 presents the comparison between analytic
and FEM solutions for a hinged-hinged beam. The second column presents the frequency parameters for a beam without
foundation (e = 0, p = 0), third to sixth, for Winkler foundation (e = 5, p = 0), and seventh to tenth, for Pasternak
foundation (e = 5, p = 5).

The results showed that the foundation increases the frequency parameter and Pasternak presents the highest increase.
Also, the Winkler foundation increase reduces drastically as the mode number rise. This reduction can also be observed
in the frequency parameters of Pasternak foundation. However, the decrease is not as high as presented by Winkler.

For higher modes, the difference between the FEM and analytic solutions decreases when the number of elements is in-
creased and with 70 elements the FEM and analytic solutions present a excellent agreement. Therefore, FEM formulation
presents a high accuracy in this kind of problem.

The subsections present numerical examples for hinged-hinged, clamped-clamped and clamped-free beams for the
FEM solution using 70 elements to analyze the effect of the Pasternak foundation in the usual boundary conditions of the
Euler-Bernoulli Beam. The boundary conditions are defined in Table 2.
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Table 2. Boundary Conditions

Boundary Condition Deflection Slope Moment Shear Force

Hinged V (ξ) = 0 -
d2V (ξ)

dξ2
= 0 -

Clamped V (ξ) = 0
dV (ξ)

dξ
= 0 - -

Free - -
d2V (ξ)

dξ2
= 0 EI

d3V (ξ)

dξ3
+Gp

dV (ξ)

dξ
= 0

4.1 Hinged-Hinged

Figure 3(a) shows the relative difference between the frequency parameters of a hinged-hinged on a Pasternak foun-
dation with the frequency parameters of a beam without foundation (e = 0, p = 0) for various values of the parameter e
and p for the first five frequencies. This relative difference illustrates the increase in the natural frequencies for a beam on
Pasternak foundation with increasing stiffness.
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(a) Increase in the natural frequencies. (b) First five normal modes.

Figure 3. Pasternak foundation influence on a hinged-hinged beam.

As the foundation stiffness increases, the natural frequencies have a huge increase. Also, the reduction as the num-
ber mode increases, presented in Table 1, can be noted and makes possible distinguish that the first mode has the major
increases, in which the difference between its frequency parameters and the others becomes more significant as the foun-
dation stiffness rise.

Figure 3(b) illustrates the normal modes for the first five frequencies for a beam without foundation and a beam on a
Pasternak foundation (e = 20, p = 20). The figure shows that the Pasternak foundation does not affect the normal modes,
even though the foundation parameters used represent a very stiff foundation.

4.2 Clamped-Clamped

The relative difference between the frequency parameters for the first five frequencies of a clamped-clamped beam on
Pasternak foundation with a beam without foundation as the foundation stiffness increases is shown in Fig. 4(a).

Even though the frequencies still have a huge increase, it is not high as the presented by the hinged-hinged case. Also,
the normal modes presents a slight difference when the foundation is present, as shown in Fig. 4(b). In contrast to the
hinged-hinged case, all the modes present a reduction in the amplitude with the first normal mode presenting the the major
decrease.

Figure 5 present the relative error between the amplitude of a clamped-clamped beam on a Pasternak foundation and
a beam without foundation as the foundation stiffness increases. The figure shows that higher normal modes appears to
converges to same curve. This behaviour allows inferring that as the mode number rise, the normal modes will presents
the same reduction.
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Figure 4. Pasternak foundation influence on a hinged-hinged beam.
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Figure 5. Relative difference between the maximum amplitude of a beam on a Pasternak foundation and a beam without
foundation for the clamped-clamped boundary condition.

4.3 Clamped-Free

In contrast to observed in the hinged-hinged and clamped-clamped, the clamped-free beam presents a major increase,
even higher than that from hinged-hinged. As noted in the other boundary conditions, the first mode presents the great
increase when compared to the others, ratifying this characteristics of the foundation to affect only the lower modes with
the range of influence increasing as the foundation stiffness increases.

Figures 6(b) and 7 shows the effect of the Pasternak foundation in the normal modes of a clamped-free beam. This
boundary conditions presents the major reduction in the amplitude. In contrast to the expected, for some foundation
stiffness, the amplitude of the normal mode increase with the presence of the Pasternak foundation. However, only the
first mode does present this behaviour, reducing the amplitude for all the foundation frequencies values. This behavior
can be explained by the extra factor that the Pasternak foundation insert in the free-end boundary condition, as seen in
Table 2.

5. CONCLUSIONS

This paper presented a finite element method for free vibration analysis of Euler-Bernoulli beams on Pasternak foun-
dation regarding the foundation parameters and the boundary conditions. A cubic polynomial was used for deflection in
a two-node beam element with two degrees of freedom per node. The investigation determined that the presence of a
foundation increase the natural frequencies of the beam vibration. The Pasternak foundation presents higher frequencies
than the Winkler foundation, and the increase is expressive for all modes. Also, the presence of the foundation also have
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(a) Increase in the natural frequencies. (b) First five normal modes.

Figure 6. Pasternak foundation influence on a hinged-hinged beam.
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Figure 7. Relative difference between the maximum amplitude of a beam on a Pasternak foundation and a beam without
foundation for the clamped-free boundary condition.

influence in the normal modes, reducing the amplitude as the foundation stiffness increases. The clamped-free case if the
most affected by the presence of a Pasternak foundation, which present a increase in the amplitude for some foundation
stiffness.
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