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Abstract: The flexible beams carrying attachments and non-classical boundary conditions often appear in engineering
structures, modal analysis of those structures is important and necessary in structural design. The analysis of vibrating
beams with ends elastically restrained against rotation and translation or with ends carrying concentrated masses or
rotational inertias is of great interest in a variety of practical cases. In this analysis, the governing differential equations
of the beam, which is a partial differential equation with variable coefficients, and that of the mass-spring system, which
is an ordinary differential equation, are found. The exact solution of the problem is then obtained using classical and
non-classical boundary conditions and the eigenvalues and eigenfunctions are found. Finally, some cases with available
results in the literature are presented and analyzed.
Keywords: Euler-Bernoulli beam, Non-classical boundary conditions, Natural frequencies

1. INTRODUCTION

The interest in non-classical mechanical boundary conditions is originated in the study of stability of elastic structures,
and a convenient reference for the various mechanical loadings considered until 1963 is the book by Bolotin (1963).
The dynamic analysis of beams with ends elastically restrained against rotation and translation or with ends carrying
concentrated masses or rotational inertia is a classical structural problem, which nowadays is becoming more and more
important, even in mechanical engineering and in aeronautic engineering. Numerous authors have approached the analysis
assuming that the beam is sufficiently slender to be considered as an Euler-Bernoulli beam, and trying to analytically solve
the resulting fourth-order differential equation with variable coefficients. In exact method, difficulties arises in solving
roots of the characteristic equation, except for very simple boundary conditions, that one has to go for numerical solution
and in determining the normal modes of the system.

Grossi and Arenas (1996) employed both the classical Rayleigh-Ritz method and the optimized Rayleigh-Schmidt
method to find the frequencies with varying width and height. A lot of numerical results were given, for various non-
classical boundary conditions. Craver Jr. and Jampala (1993) examined the free vibration frequencies of a cantilever
beam with variable cross-section and constraining springs. De Rosa and Auciello (1996) gave the exact free frequencies
of a beam with linearly varying cross-section, in the presence of generic non-classical boundary conditions, so that all the
usual boundary conditions can be treated as particular cases. Chun (1972) studied the free vibration of a Bernoulli-Euler
beam hinged at one end by a rotational spring with constant spring stiffness and with the other end free. Wang and Lin
(1996) utilized the Fourier series to investigate the dynamic analysis of beams having arbitrary boundary conditions. The
Rayleigh-Ritz approach was used by Zhou and Cheung (2000) to find the first free vibration frequencies of three different
tapered beams with various boundary conditions and truncation factors. Maurizi et al. (1976) studied the problem of
free vibration of a uniform beam hinged at one end by a rotational spring and subjected to the restraining action of a
translational spring at the other end using exact expression of trigonometric and hyperbolic functions. Maurizi et al.
(1990) studied ends elastically restrained against rotation and translation in Timoshenko beams. Frequency equation of
the cantilever beams carrying springs and masses by use the normal summation technique, was presented by Gürgöze
(1984). Gürgöze (1998) also presented two formulations for the frequency equation of a clamped-free Euler-Bernoulli
beam to which several spring-mass systems are attached in span. Recently, Liu and Gurram (2009) used his variational
iteration method to calculate the natural frequencies and mode shapes of an Euler-Bernoulli beam under various supporting
conditions.
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This article focuses on the free vibration analysis of Euler-Bernoulli beams under non-classical boundary conditions.
The governing differential equations of the beam are presented and the exact solution of the problem is then obtained
using the pertinent boundary conditions. The eigenvalues and eigenfunctions of the problem which are frequencies and
mode shapes of the system are derived for various properties of the system such as stiffness of springs and attached mass.
Some numerical examples with available results in the literature are analyzed and its results discussed.

2. EULER-BERNOULLI BEAM THEORY

The partial differential equation of motion for free vibration of a Euler-Bernoulli beam is given by (Euler, 1773):

EI
∂4v(x, t)

∂x4
+ ρA

∂2v(x, t)

∂t2
= 0, (1)

where A is the cross-sectional area, I is the moment of inertia of the cross-sectional area, E is the modulus of elasticity,
ρ is the mass per unit of volume and v(x, t) is the transverse deflection at the axial location x and at the time t. Since the
equation of the motion involves a second order derivative with respect to time and a fourth order derivative with respect to
position, two initial equations and four boundary conditions are needed for finding a unique solution for v(x, t). Equation
of motion can be solved by using the methods of separation of variables and eigenfunctions expansion. The transverse
deflection v(x, t) are separated into two functions as follows:

v(x, t) = V (x)T (t), (2)

where V (x) is know as the normal mode or characteristic function of the beam. Therefore, the Eq. (1) is rewritten as (Han
et al., 1999):

c2
1

V (x)

∂4V (x)

∂x4
= − 1

T (t)

∂2T (t)

∂t2
= ω2, (3)

knowing that c =
√
EI/ρA and ω is the natural frequency. Note that the left side of the Eq. (3) is relation to position and

the right side to time and both can be splitted into two equations (Avcar, 2014):

d4W (x)

dx4
− β4W (x) = 0, (4)

d2T (t)

dt2
+ ω2T (t) = 0, (5)

where β is the eigenvalue of the normal mode V (x) and

β =

√
ω

c
. (6)

Solutions of T (t) and V (x) in Eq. (4) and Eq. (5), respectively, are given by:

T (t) = D cos (ωt− φ), (7)
V (x) = C1 sin(βx) + C2 cos(βx) + C3 sinh(βx) + C4 cosh(βx). (8)

C1, C2, C3 and C4 are constants which can be found by using the appropriate boundary conditions, D is a constant
which can be obtained by using initial conditions and φ is the phase angle.

3. BOUNDARY CONDITIONS AND FREQUENCY EQUATIONS

Each one of the boundary conditions provides two equations necessary to determine the unknown constants C1 to C4

and the values of β in Eq. (8). They are usually classified in two groups: the classical and the non-classical boundary
conditions. The classical boundary conditions are the most common in the vibration analysis in beams and are generally
classified in free, clamped and supported ends and their equations are showed in Tab. 1. Non-classical boundary conditions
are less common, but their importance are as the same as the classical conditions. These boundary conditions consists
in points connected to masses, springs, rotational inertia or, even, dampers. All those conditions are presented in Tab. 2,
where a = −1 and b = 1 for the left end and a = 1 and b = −1 for the right end. km is the stiffness of the linear spring,
kr is the stiffness of the torsional spring, cm is the stiffness of the damper, cr is the stiffness of the torsional damper, mc

is the value of the concentrated mass and the Ic is the value of the rotational inertia of the concentrated mass.
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Table 1: Classical Boundary Conditions.

Boundary Condition Equations

Free end EI
∂2v(x, t)

∂x2
= 0 and EI

∂3v(x, t)

∂x3
= 0

Supported end v(x, t) = 0 and EI
∂2v(x, t)

∂x2
= 0

Clamped end v(x, t) = 0 and EI
∂v(x, t)

∂x
= 0

Table 2: Non-classical Boundary Conditions.

Boundary Condition Equations

Linear Spring EI
∂2v(x, t)

∂x2
= 0 and EI

∂3v(x, t)

∂x3
= akmv(x, t)

Torsional Spring EI
∂3v(x, t)

∂x3
= 0 and EI

∂2v(x, t)

∂x2
= bkr

∂v(x, t)

∂x

Concentrated Mass EI
∂2v(x, t)

∂x2
= 0 and EI

∂3v(x, t)

∂x3
= amc

∂2v(x, t)

∂t2

Rotational Inertia EI
∂3v(x, t)

∂x3
= 0 and EI

∂2v(x, t)

∂x2
= bIc

∂3v(x, t)

∂x ∂t2

Damper EI
∂2v(x, t)

∂x2
= 0 and EI

∂3v(x, t)

∂x3
= acm

∂v(x, t)

∂t

Torsional Damper EI
∂3v(x, t)

∂x3
= 0 and EI

∂2v(x, t)

∂x2
= bcr

∂2v(x, t)

∂x ∂t

The application of appropriate boundary conditions presented in Tab. 2 into the Eq. (8) and its derivatives yields for
each type of beam a set of four homogeneous linear algebraic equations in four constants C1 to C4. A non-trivial solution
exists only if the determinant of the coefficients vanishes. The solving of the determinant yields the frequency equation or
the characteristic equation for each type of beam. Table 3 show frequency equations for some beams under non-classical
boundary conditions presented in Tab. 2, where:

Q1 = [ cos(βn l ) cosh(βn l )− 1 ],

Q2 = sin(βn l ) sinh(βn l ),

Q3 = sin(βn l ) cosh(βn l),

Q4 = cos(βn l ) sinh(βn l ) and

Q5 = cos(βn l ) cosh(βn l ).
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Table 3: Frequency equations for some beams under non-classical boundary conditions.

Boundary Condition Frequency Equations

Linear Spring - Linear Spring (EI)2β6Q1 − 2k2mQ2 + 2EIkmβ
3[Q3 −Q4] = 0.

Linear Spring - Concentrated Mass ρAEIβ3Q1 + EImcβ
4[Q4 −Q3] + kmρA[Q3 −Q4] + 2kmβQ2 = 0.

Linear Spring - Torsional Spring EIβkm[Q3 −Q4] + EIβ3kr[Q4 +Q3]− 2kmkrQ5 + (EI)2β4Q1 = 0.

Torsional Spring - Torsional Spring 2k2rQ2 + E2I2β2Q1 + 2βkrEI[Q4 +Q3] = 0.

These frequency equations are highly transcendental and need to be solved numerically. In this paper was used the
false position root finding method.

4. NUMERICAL EXAMPLES

This section presents numerical examples for Euler-Bernoulli beams subjected to three kind of boundary conditions.
The same parameters values are considered for all examples and are given by EI = 8000N.m2, ρA = 3000 kg/m,
L = 1m, mc = 100 kg, km = 1000N/m, kr = 1000N.m/rad and the frequency equation are showed in Tab. 3 for
each case analyzed.

4.1 Beam connected to linear springs at both ends

Consider a beam connected to linear springs at both ends shown in Fig. 1, the natural frequencies values and the
eigenvalues obtained from the frequency equation are presented in Tab. 4.

L

km km
Figure 1: Beam connected to linear springs at both ends.

Table 4: Natural frequencies values ω and eingenvalues βn of a Euler-Bernoulli beam connected to linear springs
at both ends.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
Eigenvalues βn 4, 7324 7, 8537 10, 9958 14, 1373 17, 2788 20, 4204 23, 5620

Natural frequencies ωn 36, 5719 100, 7245 197, 4412 326, 3732 487, 5419 680, 9451 906, 5825

The normal mode V (x) and the slope θ(x), which is the derivative of V (x), are as follow:

V (x) = σ1[cos(βx) + cosh(βx)] + σ2sin(βx) + sinh(βx), (9)

θ(x) = β{σ1[−sin(βx) + sinh(βx)] + σ2cos(βx) + cosh(βx)}, (10)

where

σ1 =
EIβ3[sinh(βnl)− sin(βnl)]

−EIβ3cosh(βnl) + 2kmsin(βnl) + EIβ3cos(βnl)

and

σ2 =
2kmsinh(βnl)− EIβ3cos(βnl) + EIβ3cosh(βnl)

−EIβ3cosh(βnl) + 2kmsin(βnl) + EIβ3cos(βnl)
.

Figure 2 showed mode shape of the first four eigenvalues and Fig. 3 showed the plots of slope. We can observed that
the major deflection always occurs at the ends of the beam. Note that the modal shapes and graphs of slope of this beam
are very similar to those of a free-free beam, as showed in Fig. 4 and Fig. 5. Also, if the stiffness km is equal to zero, the
resulting frequency equation is one for a free-free beam as follows

cos(βnl) cosh(βnl)− 1 = 0. (11)
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Figure 2: Modal Shapes for a Euler-Bernoulli beam connected to linear springs at both ends.
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Figure 3: Slope of Euler-Bernoulli beam connected to linear springs at both ends associate to the first four eigen-
values βn.
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Figure 4: Modal Shapes for a free-free Euler-Bernoulli beam.

Furthermore, the natural frequency values found are very closer from the values for a free-free beam, which are
presented in Tab. 5. For a free-free beam, the normal mode V(x) and the slope θ(x) are:

V (x) = σ[cos(βx) + cosh(βx)] + sin(βx) + sinh(βx), (12)

θ(x) = β{σ[−sin(βx) + sinh(βx)] + cos(βx) + cosh(βx)}, (13)

where

σ =
sin(βnl)− sinh(βnl)
cosh(βnl)− cos(βnl)

.

4.2 Beam connected to a linear spring at left end and to a concentrated mass at right end

Now, a beam connected to a linear spring at left end and to a concentrated mass at right end shown in Fig. 6 is analyzed.
The normal mode V (x) and the slope θ(x) are:

V (x) = σ1[cos(βx) + cosh(βx)] + σ2sin(βx) + sinh(βx), (14)
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Figure 5: Slope of free-free Euler-Bernoulli beam associate to the first four eigenvalues βn.

Table 5: Natural frequencies values ω and eigenvalues βn of a free-free Euler-Bernoulli beam.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
Eigenvalues βn 4, 7300 7, 8532 10, 9956 14, 1372 17, 2788 20, 4204 23, 5619

Natural frequencies ωn 36, 5354 100, 7113 197, 4344 326, 3691 487, 5391 680, 9431 906, 5811

θ(x) = β{σ1[−sin(βx) + sinh(βx)] + σ2cos(βx) + cosh(βx)}, (15)

where

σ1 =
EIβ3[sinh(βnl)− sin(βnl)]

−EIβ3cosh(βnl) + 2kmsin(βnl) + EIβ3cos(βnl)

and

σ2 =
2kmsinh(βnl)− EIβ3cos(βnl) + EIβ3cosh(βnl)

−EIβ3cosh(βnl) + 2kmsin(βnl) + EIβ3cos(βnl)
.

km

L

mc

Figure 6: Beam connected to a linear spring at left both end and to a concentrated mass at right end.

The natural frequencies values ω and the eigenvalues β are presented in Tab. 6. As the previous beam, the modal
shapes in Fig. 7 and the slopes in Fig. 8 the are similar to those of a free-free beam, except for the deflection at left end
be greater than at the right end. Besides, considering mc and km equals to zero, the frequency equation becomes equal to
frequency equation of free-free beam.

Table 6: Natural frequencies values ω and eigenvalues βn of a Euler-Bernoulli beam connected to spring at left
end and to a concentrated mass at right end.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
Eigenvalues βn 4, 5988 7, 6530 10, 7380 13, 8315 16, 9325 20, 0395 23, 1512

Natural frequencies ωn 34, 5368 95, 6418 188, 2911 312, 4104 468, 1967 655, 7769 875, 2458

4.3 Beam connected to a linear spring at left end and to a torsional spring at right end

In this example, a beam connected to a linear spring at left end and to a torsional spring at right end is considered,
as showed in the Fig. 9. The natural frequencies values and the eigenvalues are presented in Tab. 7 and the normal mode
V (x) and the slope θ(x) are:

V (x) = σ1[−cos(βx)− cosh(βx)] + σ2sin(βx) + sinh(βx), (16)

θ(x) = β{σ1[sin(βx)− sinh(βx)] + σ2cos(βx) + cosh(βx)}, (17)
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Figure 7: Modal Shapes for a Euler-Bernoulli beam connected to a linear spring at left end and to a concentrated
mass at right end.
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Figure 8: Slope of Euler-Bernoulli beam connected to a linear spring at left end and to a concentrated mass at
right end associate to the first four eigenvalues βn.

where

σ1 =
EIβ3[cos(βnl)− cosh(βnl)]

2kmcos(βnl)− EIβ3sinh(βnl)− EIβ3sin(βnl)

and

σ2 =
2kmcosh(βnl)− EIβ3sinh(βnl)− EIβ3sin(βnl)

2kmcos(βnl)− EIβ3sinh(βnl)− EIβ3sin(βnl)
.

km

L

kr

Figure 9: Beam connected to a linear spring at left both end and to a torsional spring at right end.

Modal shapes presented in Fig. 10 and the plots of slopes in Fig. 11 are still very similar to those of a free-free beam
and to those of the previous beams. Furthermore, if km and kr are zero, the result is similar to the frequency equation for
a free-free beam.

Table 7: Natural frequencies values ω and eingenvalues βn of a Euler-Bernoulli beam connected to a linear spring
at left end and to a torsional spring at right end.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
Eigenvalues βn 4, 7559 7, 8691 11, 0069 14, 1460 17, 2860 20, 4264 23, 5672

Natural frequencies ωn 36, 9365 101, 1199 197, 8412 326, 7757 487, 9457 681, 3498 906, 9878
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Figure 10: Modal Shapes for a Euler-Bernoulli beam connected to a linear spring at left end and to a torsional
spring at right end.
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Figure 11: Slope of Euler-Bernoulli beam connected to a linear spring at left end and to a torsional spring at right
end associate to the first four eigenvalues βn.

4.4 Beam connected to torsional springs at both ends

Finally, consider a beam connected to a torsional spring at left end and to a torsional spring at right end as showed in
Fig. 12 and with normal mode V (x) and the slope θ(x) given by:

V (x) = σ1[sin(βx) + sinh(βx)] + σ2cos(βx) + cosh(βx), (18)

θ(x) = β{σ1[cos(βx) + cosh(βx)]− σ2sin(βx) + senh(βx)}, (19)

where

σ1 =
EIβ[sinh(βnl) + sin(βnl)]

EIβ[cos(βnl)− cosh(βnl)] + 2βkrsin(βnl)

and

σ2 =
EIβ[cos(βnl)− cosh(βnl)]− 2βkrsinh(βnl)

EIβ[cos(βnl)− cosh(βnl)] + 2βkrsin(βnl)
.

L

kr kr

Figure 12: Beam connected to torsional springs at both ends.

According Tab. 8, the highest values of the natural frequencies values ω and the eigenvalues β were found for the beam
connected to torsional springs. For this beam, the modal shapes showed in the Fig. 13 and the graphs of slope in Fig. 14
are the inverse for those of each one of the preceding beams and for a free-free beam, but they still have a similarity.
Besides, the frequency equation for a free-free beam is obtained if the value of kr is zero.
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Table 8: Natural frequencies values ω and eingenvalues βn of a Euler-Bernoulli beam connected to torsional
springs at both ends.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
Eigenvalues βn 4, 7793 7, 8845 11, 0180 14, 15470 17, 2931 20, 4325 23, 5725

Natural frequencies ωn 37, 3004 101, 5146 198, 2408 327, 1779 488, 3494 681, 7544 907, 3931
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Figure 13: Modal Shapes for a Euler-Bernoulli beam connected to torsional springs at both ends.
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Figure 14: Slope of Euler-Bernoulli beam connected to torsional springs at both ends associate to the first four
eigenvalues βn.

5. CONCLUSION

In this paper, free vibration of beams considering different boundary conditions are analyzed. The natural frequencies
and the eigenvalues for Euler-Bernoulli beams are obtained and their modal shapes are showed in graphs. The eigenvalues
and the eigenfunctions, for each case analyzed, are very similar to the available results in the literature, like the studies
conducted by Morelatto (2000).

It was noted that the major deflection and slope of the beams in study always happens at their ends. That occurs
because the spring-mass-beam system presents an initial deflection in order to present an static equilibrium. Since that
does not have any excitation after the static equilibrium, the springs or masses will not deflect anymore. Meanwhile, in
free vibration, the entire beam is vibrating trying to restore to the position of equilibrium, always finding a maximum
deflection and slopes at the ends of the beams. For this reason, the behavior of these beams are similar to a free-free beam,
even their frequency equation can become that of a free-free beam, if the values for the stiffness of the springs and for the
masses are equals to zero.
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