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Abstract: In the classical Bernoulli-Euler theory flexural vibrations of beam, the effect of rotatory inertia and shear
are neglected. However, the equations obtained on these assumptions are inadequate for short and thin-webbed beams
and for beams where higher modes are required, considerable errors may be incurred by use of equations. When a
beam is subjected to lateral vibration so that depth of the beam is a significant proportion of the distance between two
adjacent nodes, rotatory inertia of beam and transverse deformation arising from the severe contortions of the beam
during vibration make significant contributions to the lateral deflection. Therefore rotatory inertia and shear effects must
be taken into account in the and analysis of high-frequency vibration of all beams, and in all analyses of deep beams.
In this work, the effect of rotatory inertia and transverse-shear deformation on beams are introduced and analysed.
Frequency equation for each case are developed in terms of dimensionless parameters of rotatory and shear. Numerical
examples presented in literature are re-examined.
Keywords: beam theory, critical frequency, dispersion relation, rotatory inertia, shear deformation

1. INTRODUCTION

Beam is often used as a structural element in many engineering structures, like frames, rotor blades and ship hulls,
to model building behavior both for stability or dynamic analysis. Although, deflection of beams has interested the
human since the century XVII. The first deflection studies were claimed by the Bernoulli family (Timoshenko, 1953).
Daniel Bernoulli ( 1700-1782 ) and his pupil Leonhard Euler ( 1707-1783 ), continues the beam deflection studies of his
uncle Jacob Bernoulli ( 1654-1705 ). Euler published in 1744 and 1773 the Euler-Bernoulli beam also known as the
classical theory, with the suggestion gave by his advisor of applying the variational calculus to derive the equation of
deflection curve. However, Saint Venant ( 1797-1886 ) noticed that the initial conditions for the beam problem needed
to be reformulated, because due to increasing thickness, the plane sections do not remain plane and perpendicular. John
William Strutt ( 1842-1919 ), known by Lord Rayleigh, in 1877 tried to resolve the inaccuracy noticed by his advisor, Saint
Venant, considering the influence of the rotatory inertia. Rayleigh (1877a) analysed the beam by using the Hamilton’s
principle approach and in the discussion about waves in beams in terms of dispersion relation, phase and group speed.
Due to new formulation occurred a slight improvement in the results for non-slender beams. Stephen Timoshenko ( 1878-
1972 ) realized that it was necessary to considerate the shear deformation contribution for the formulation to become
closer reality. Beam theory proposed by Timoshenko (1921) was in remarkably good agreement with the exact equations
derived from the general equations of the theory of elasticity studied by Pochhammer (1876) and Chree (1889). Since
Timoshenko published his beam model, many researchers investigated and improved the understand about beam behavior.

Goens (1931) obtained the solution of the differential equation of motion in terms of hyperbolic and trigonometric
terms for the free-free boundary condition and noticed that from a critical frequency the hyperbolic term became trigono-
metric. Huang (1961) published the frequency equations and mode of vibration for the classical boundary conditions.
In order to improve Timoshenko beam results for higher frequencies (frequencies above critical frequency), Cowper
(1966) developed a general expression for shape factor based on elasticity. Thomas and Abbas (1975), Downs (1976)
and Levinson and Cooke (1982) are credited for studies on the dynamic behavior of Timoshenko beams from higher
frequencies. Han et al. (1999) was the first to present a wider study of beams in general by discussing the four theories
(Euler-Bernoulli, Rayleigh, Shear and Timoshenko). Following Rayleigh’s waves analysis, various authors obtained and
discussed the dispersion relation, phase and group velocity for Timoshenko beams, some are Kolsky (1964), Wang and
So (2005) and Smith (2008). This paper presents a review of principals beam theories. The motions equation, that de-
scribe the behaviour of a physical system in terms of its motion as a function of times, are derived from Euler-Lagrange
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equation. The effects of transverse shear deformation and rotatory inertia are included in the governing equations. Ap-
plying the adequate boundary conditions, frequency equations are obtained and their roots are calculated by using False
Position Method. Numerical results shown to signify the differences in natural frequency, phase speed and group velocity
prediction about each of four models.

2. EULER-BERNOULLI BEAM MODEL

In the Euler-Bernoulli theory or thin beam theory, the rotation of cross sections of the beam is neglected compared
to the translation. In addition, the angular distortion due to shear is considered negligible compared to the bending
deformation. The thin beam theory is applicable to beams for which the length is much larger than the depth (at least 10
times) and the deflections are small compared to the depth. The potential and kinetic energy for this model are given by
Han et al. (1999):

Ub =
1

2

∫ L

0

EI

(
∂2v(x, t)

∂x2

)2

dx and Tt =
1

2

∫ L

0

ρA

(
∂v(x, t)

∂t

)2

dx, (1)

where L is the length of beam, ρ, the mass per unit volume, A, the cross-sectional area, I , the moment of inertia of
cross section, E, the modulus of elasticity, and v(x, t) is the transverse deflection at the axial location x and time t. The
governing partial differential equation of motion for free-vibration system is first given by (Euler, 1773):

d4
∂4v(x, t)

∂x4
− ∂2v(x, t)

∂t2
= 0, (2)

where d is a coefficient relating acceleration and forces expressed as ∂4v/∂x and ∂2v/∂t2 respectively. However, Eq. (2)
is commonly written as (Scarpello and Ritelli, 2003):

EI
∂4v(x, t)

∂x4
+ ρA

∂2v(x, t)

∂t2
= 0. (3)

Assume that the beam is excited harmonically with a frequency f and

v(x, t) = V (x)ejft and ξ = x/L, (4)

where j =
√
−1, ξ is the non-dimensional length of the beam and V (x) is normal function of v(x). Substituting the

relations presented in Eq. (4) into Eq. (3) and omitting the common term ejft

∂4V (ξ)

∂ξ4
− b2V (ξ) = 0, with b2 =

ρAL4

EI
f2, and f = 2πω, (5)

where ω is natural frequency. The solution V (ξ) can be expressed as follow:

V (ξ) = C1cos(βeξ) + C2sin(βeξ) + C3cosh(βeξ) + C4sinh(βeξ), where βe =
√
b. (6)

Function V (ξ) is know as the normal mode or characteristic function of the beam. C1, C2, C3 and C4 are constants
which can be found from the boundary conditions. In the Tab. 1 are showed the classical boundary conditions, the
frequency equations and the first four values for bi excluding the rigid-body mode (bi = 0).

Table 1: bi eigenvalues and frequency equations of Euler-Bernoulli model.
frequency equation b1 b2 b3 b4

clamped-clamped cosβecoshβe − 1 = 0 22.3733 61.6728 120.9034 199.8594

hinged-hinged sinβesinhβe = 0 9.8696 39.4784 88.8264 157.9137

free-free cosβecoshβe − 1 = 0 22.3733 61.6728 120.9034 199.8594

clamped-free cosβecoshβe + 1 = 0 3.5160 22.0345 61.6972 120.9019

A special characteristic of this model is that the frequency equation for the free-free and clamped-clamped cases are
the same. Frequency equations presented in Tab. 1 are transcendental and need to be solved numerically. In this paper
was used the False Position root finding method. The values for bi (with i=1,2,3,...) can be found from the appropriate
frequency equation and then the natural frequencies ωi (with i=1,2,3,...) may be found solving Eq. (5) for ω:

ωi =
bi
2π

√(
EI

ρAL4

)
with i = 1, 2, ..., n. (7)

The general solution for propagation of waves along a beam can be assumed as Wang and So (2005):

v(x, t) = Dej(kx−ft), (8)
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where D is the amplitude, k, the wave number, and f the frequency. The relation of the wave number k and its frequency
f is called dispersion relation. Substituting Eq. (8) into Eq. (3), the dispersion relationship of the Euler-Bernoulli beam
is given by:

f2 =
EI

ρA
k4. (9)

When a solid medium is deformed two types of elastic waves may be propagated: dilatation and distortion waves.
Waves of dilatation propagates as compressional waves with the velocity cl while waves of distortion propagates as
transverse waves with the velocity ct given by Kolsky (1964):

c2l = (B + 4G/3)/ρ and c2t = G/ρ, (10)

where B is the bulk modulus and G the modulus of rigidity. The ratio of the velocities cl and ct can be presented as a
function of the Poisson’s ratio ν:

ct = cl

√
1− 2ν

2(1− ν)
. (11)

Rayleigh (1877b) defines phase speed c and group velocities cg of flexural waves propagating on a elastic medium as:

c =
f

k
and cg =

∂f

∂k
. (12)

Therefore, Eq. (12) can be rewritten as:

c = k

√(
EI

ρA

)
and cg = 2k

√(
EI

ρA

)
. (13)

3. RAYLEIGH BEAM MODEL

The fact that the phase speed and group speed presented in Eq. (13) are linearly increasing with the wave number k
leads to infinity velocities of waves propagation as k approaches infinity. This physical incoherence was solved by Lord
Rayleigh (1877a) by inclusion of the rotatory inertia effects to the classical theory. The kinetic energy due to the rotation
of the cross section is given by:

Tr =
1

2

∫ L

0

ρI

(
∂2v(x, t)

∂t ∂x

)2

dx. (14)

The kinetic energy of the beam is derived partly from the motion of translation (Eq. 1) and partly from the rotation
about axes through their centres of inertia perpendicular to the plane of vibration (Eq. 14). The total kinetic energy is
given by:

T =
1

2

∫ L

0

ρA

(
∂v(x, t)

∂t

)2

dx+
1

2

∫ L

0

ρI

(
∂2v(x, t)

∂t ∂x

)2

dx. (15)

Equation of motion is obtained using Hamilton’s principle:∫ t2

t1

δ(T − U) dt+

∫ t2

t1

δWnc dt = 0. (16)

where T and U , are the the total kinetic and potential energy of the system respectively, δWnc the virtual work done by
nonconservative forces, t1 and t2, times at which the configuration of the system is known, and δ( ) the symbol denoting
virtual change, in the quantity in parentheses. Substituting Eq. (1) and Eq. (15) into Eq. (16) and assuming δWnc = 0,
equation of motion can be expressed as (Rayleigh, 1877a):

EI
∂4v(x, t)

∂x4
+ ρA

∂2v(x, t)

∂t2
− ρI ∂

4v(x, t)

∂x2∂t2
= 0. (17)

Assume that the beam is excited harmonically with a frequency f and adopting the same procedure presented in Eq.
(4), we obtain:

∂4V (ξ)

∂ξ4
+ b2r2

∂2V (ξ)

∂ξ2
− b2V (ξ) = 0, where r2 =

I

AL2
(18)

is a coefficient related with the effect of rotatory inertia. The solution V (ξ) can be expressed in terms of trigonometric
and hyperbolic functions as follows:

V (ξ) = C1cosh(αrξ) + C2sinh(αrξ) + C3cos(βrξ) + C4sin(βrξ), (19)

with

αr =
b√
2

√
−r2 +

√
r4 + 4/b2 and βr =

b√
2

√
r2 +

√
r4 + 4/b2. (20)
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Observe that Eq. (19) have two eigenvalues, αr and βr, that are related with trigonometric and hyperbolic sines and
cosines respectively. Also observe that for r = 0 in Eq. (20), these eigenvalues turns to αr = βr = βe. Frequency
equations for some boundary conditions are presented in Tab. 2.

Table 2: Frequency equations of Rayleigh model.
frequency equation

clamped-clamped 2− 2 cosh(αr)cos(βr)− b r2sinh(αr)sin(βr) = 0

hinged-hinged sin(βr)sinh(αr) = 0

free-free 2− 2 cosh(αr)cos(βr) + b(b2r6 + 3r2)sinh(αr)sin(βr) = 0

clamped-free 2 + (b2r4 + 2)cosh(αr)cos(βr)− b r2sinh(αr)sin(βr) = 0

Notice that as r approaches zero, the frequency equations presented in Tab. 2 becomes identical to that of Tab. 1.
Unlike the Euler-Bernoulli beam case, natural frequency ω is written in terms of two eigenvalues (αr and βr) as follows:

ωi =

√
β2
r − α2

r

2πr

√(
EI

ρAL4

)
with i = 1, 2, ..., n. (21)

Substituting Eq. (8) into Eq. (19), the dispersion relationship for Rayleigh beam is given by:

f2 =
EIk4

ρA+ ρIk2
. (22)

Due to rotatory inertia effect, the phase speed c and group velocity cg presented in Eq. (12) become:

c = k

√(
EI

ρA+ ρIk2

)
and cg = 2c− ρ

E
c3. (23)

4. SHEAR BEAM MODEL

A still more accurate differential equation is obtained if the deflection due to shear will be taken into account. This
model adds the effect of shear distortion but not rotatory inertia to the Euler-Bernoulli model. The potential energy due to
shear is given by (Timoshenko, 1921):

Us =
1

2

∫ L

0

KGA(θ)2dx, (24)

where K is the shape factor or shear coefficient, θ, the angle of rotation due to shear. Shape factor is a coefficient that
multiplies the angle of shear θ at the neutral line of a beam to give an average value of θ for the entire cross-section.
Timoshenko (1921) introduced K as a numerical factor depending on the shape of cross section. However, this definition
leads to unsatisfactory results when Timoshenko beam equations are used to calculate the high frequency spectrum.
Satisfactory results were obtained by Cowper (1966), he developes a general expression for K during the process of
specialization of the equations of three-dimensional elasticity to the Timoshenko beam equation. In Cowper’s definition
K is a function of cross-section shape and Poisson’s ratio ν given by:

K =
4(1 + ν)I2

ν
(∫ ∫

y2dxdy − I
)
I − 2A

∫ ∫
x
(
X(x, y) + xy2

)
dxdy

, (25)

where X(x, y) is a harmonic function which satisfies the boundary of the cross section. Cowper calculates shear coeffi-
cient K for various cross sections, some of the values are tabulated in Tab. 3.

Table 3: The shear factor.
Cross section K

Rectangle K =
10(1 + ν)

12 + 11ν

Circle K =
6(1 + ν)

7 + 6ν

Thin-walled round tube K =
2(1 + ν)

4 + 3ν

Let ∂v/∂x denote the slope of the deflection curve when the shearing force is neglected and θ the angle of shear at
the neutral axis in the same cross section, then we find for total slope:

ψ = θ +
∂v

∂x
. (26)
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Note that the shear angle is neglected in Euler-Bernoulli and Rayleigh model, such as the bending rotation become
equal to total rotation (ψ = ∂v/∂x). Due to shear deformation effect addiction the potential energy due to bending given
in Eq. (1) is slightly modified to include ψ:

Ub =
1

2

∫ L

0

EI

(
∂ψ(x, t)

∂x

)2

dx. (27)

The potential energy of the beam is derived partly from the bending deformation (Eq. 27) and partly from the shear
deformation (Eq. 24). Substituting Eq. (26) into Eq. (24), total potential energy is given by:

U =
1

2

∫ L

0

EI

(
∂ψ(x, t)

∂x

)2

dx+
1

2

∫ L

0

KGA(ψ − ∂v

∂x
)2dx. (28)

Substituting Eq. (1) and Eq. (28) on Hamilton’s Principle (Eq. 16) we have two coupled equations expressed as:

EI
∂4v(x, t)

∂x4
+ ρA

∂2v(x, t)

∂t2
− ρEI

KG

∂4v(x, t)

∂x2∂t2
= 0, (29)

EI
∂4ψ(x, t)

∂x4
+ ρA

∂2ψ(x, t)

∂t2
− ρEI

KG

∂4ψ(x, t)

∂x2∂t2
= 0. (30)

Unlike in the Euler-Bernoulli beam and the Rayleigh models, there are two dependent variables (v and ψ) for Shear
beam. Assume that the beam is excited harmonically with a frequency f and

v(x, t) = V (x)ejft, ψ(x, t) = Ψ(x)ejft and ξ = x/L. (31)

Substituting the relations presented in Eq. (31) into Eqs. (29-30) and adopting the same procedure as before, we
obtain:

∂4V (ξ)

∂ξ4
+ b2s2

∂2V (ξ)

∂ξ2
− b2V (ξ) = 0, and

∂4Ψ(ξ)

∂ξ4
+ b2s2

∂2Ψ(ξ)

∂ξ2
− b2Ψ(ξ) = 0, (32)

where

s2 =
EI

KGAL2
or s = r λ, with λ =

√
E

KG
, (33)

s is a coefficient related with the effect of shear distortion, and λ represents the relation between r and s. The solution
V (ξ) and Ψ(ξ) can be expressed as:

V (ξ) = C1cosh(αsξ) + C2sinh(αsξ) + C3cos(βsξ) + C4sin(βsξ), (34)
Ψ(ξ) = C ′1sinh(αsξ) + C ′2cosh(αsξ) + C ′3sin(βsξ) + C ′4cos(βsξ), (35)

with

αs =
b√
2

√
−s2 +

√
s4 + 4/b2 and βs =

b√
2

√
s2 +

√
s4 + 4/b2. (36)

Equations (34) and (35) have two eigenvalues, αs and βs, that are related with trigonometric and hyperbolic sines
and cosines respectively. Note that similarly as Rayleigh model, for s = 0 in Eq. (36), these eigenvalues turns to
αs = βs = βe. The constants of Eq. (34) and Eq. (35) are related as follows:

C ′1 =
b2(α2

s + s2)

αsL
C1, C ′2 =

b2(α2
s + s2)

αsL
C2, C ′3 = −b

2(β2
s − s2)

βsL
C3 and C ′4 =

b2(β2
s − s2)

βsL
C4. (37)

Shear model frequency equations for hinged-hinged, clamped-clamped, free-free and clamped-free boundary condi-
tions are presented in Tab. 4. Observe that as s approaches zero, the frequency equations presented in Tab. 4 becomes
identical to that of Tab. 1. The natural frequency ω is written in terms of two eigenvalues (αs and βs) as follows:

ωi =

√
β2
s − α2

s

2πs

√(
EI

ρAL4

)
with i = 1, 2, ..., n. (38)

Substituting Eq. (8) into Eq. (29), the dispersion relationship for Shear beam is given by:

f2 =
EIk4

ρA+
ρEI

KG
k2
. (39)

Due to shear distortion effect, the phase speed c and group velocity cg presented in Eq. (12) become:

c = k

√√√√√√
 EI

ρA+
ρEI

KG
k2

 and cg = 2c− ρ

KG
c3. (40)
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Table 4: Frequency equations of Shear model.
frequency equation

clamped-clamped 2− 2 cosh(αs)cos(βs) + b(b2s6 + 3s2)sinh(αs)sin(βs) = 0

hinged-hinged sin(βs)sinh(αs) = 0

free-free 2− 2 cosh(αs)cos(βs)− b(s2)sinh(αs)sin(βs) = 0

clamped-free 2 + (b2(s4) + 2)cosh(αs)cos(βs)− bs2sinh(αs)sin(βs) = 0

5. TIMOSHENKO BEAM MODEL

Timoshenko (1921) proposed a beam model which includes both rotatory inertia and shear deformation effects to
classical theory. Timoshenko theory is a major improvement for non-slender beams and for high-frequency responses
where shear or rotary effects are not negligible. Similar to Shear model, the potential energy of the beam is derived partly
from the bending deformation and partly from the shear deformation. Therefore, total potential energy is given by:

U =
1

2

∫ L

0

EI

(
∂ψ(x, t)

∂x

)2

dx+
1

2

∫ L

0

KGA(ψ − ∂v

∂x
)2dx. (41)

Similar to Rayleigh model, the kinetic energy of the beam is derived partly from the motion of translation and partly
from the rotation. However, due to shear effect addiction the kinetic energy due to rotation given in Eq. (14) is slightly
modified to include ψ:

Tr =
1

2

∫ L

0

ρI

(
∂ψ(x, t)

∂t

)2

dx. (42)

Therefore, total kinetic energy is given by:

T =
1

2

∫ L

0

ρA

(
∂v(x, t)

∂t

)2

dx+
1

2

∫ L

0

ρI

(
∂ψ(x, t)

∂t

)2

dx. (43)

Substituting Eq. (41) and Eq. (43) on Hamilton’s Principle (Eq. 16) we have two coupled equations expressed as:

EI
∂4v(x, t)

∂x4
+ ρA

∂2v(x, t)

∂t2
− ρEI

kG

∂4v(x, t)

∂t2∂x2
− ρI ∂

4v(x, t)

∂x2∂t2
+
ρ2I

kG

∂4v(x, t)

∂t4
= 0, (44)

EI
∂4ψ(x, t)

∂x4
+ ρA

∂2ψ(x, t)

∂t2
− ρEI

kG

∂4ψ(x, t)

∂t2∂x2
− ρI ∂

4ψ(x, t)

∂x2∂t2
+
ρ2I

kG

∂4ψ(x, t)

∂t4
= 0. (45)

Assume that the beam is excited harmonically with a frequency f and adopting the same procedure presented in Eq.
(31), we obtain (Soares and Hoefel, 2015):

∂4V (ξ)

∂ξ4
+ b2s2

∂2V (ξ)

∂ξ2
+ b2r2

∂2V (ξ)

∂ξ2
+ b4r2s2V (ξ)− b2V (ξ) = 0, (46)

∂4Ψ(ξ)

∂ξ4
+ b2s2

∂2Ψ(ξ)

∂ξ2
+ b2r2

∂2Ψ(ξ)

∂ξ2
+ b4r2s2Ψ(ξ)− b2Ψ(ξ) = 0. (47)

We must consider two cases when obtaining Timoshenko beam model spatial solution (Han et al., 1999). In the first
case, assume:√

(r2 − s2)2 + 4/b2 > (r2 + s2) which leads to b <
1

(r s)
, (48)

while in the second√
(r2 − s2)2 + 4/b2 < (r2 + s2) which leads to b >

1

(r s)
. (49)

Substituting b = 1/(rs) in Eq. (5), we have the critical frequency expressed as:

fc =

√
KGA

ρI
or ωc =

√
KGA/ρI

2π
. (50)

We call this cutoff value bcrit = 1/(rs). When b < bcrit the solution V (ξ) and Ψ(ξ) can be expressed in sinusoidal
and hyperbolic terms:

V (ξ) = C1cosh(αt1ξ) + C2sinh(αt1ξ) + C3cos(βtξ) + C4sin(βtξ), (51)
Ψ(ξ) = C ′1sinh(αt1ξ) + C ′2cosh(αt1ξ) + C ′3sin(βtξ) + C ′4cos(βtξ), (52)
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with

αt1 =
b√
2

√
−(r2 + s2) +

√
(r2 − s2)2 +

4

b2
and βt =

b√
2

√
(r2 + s2) +

√
(r2 − s2)2 +

4

b2
. (53)

Equations (51) and (52) have two eigenvalues, αt1 and βt, that are related with trigonometric and hyperbolic sines and
cosines respectively. Note that the coefficients r and s relates the four theories of beam. On Timoshenko model r = 0
leads to αt1 = αs and βt = βs, for s = 0 the eigenvalues turn to αt1 = αr and βt = βr, finally for r = s = 0 we have
αt1 = βt = βe. When b > bcrit the solution V (ξ) and Ψ(ξ) can be expressed only in sinusoidal terms:

V (ξ) = C1cos(αt2ξ) + C2sin(αt2ξ) + C3cos(βtξ) + C4sin(βtξ), (54)

Ψ(ξ) = C1
′
sin(αt2ξ) + C2

′
cos(αt2ξ) + C3

′
sin(βtξ) + C4

′
cos(βtξ), (55)

with

αt2′ = j
b√
2

√
(r2 + s2)−

√
(r2 − s2)2 +

4

b2
= jαt2 and βt =

b√
2

√
(r2 + s2) +

√
(r2 − s2)2 +

4

b2
. (56)

Equations (54) and (55) have two eigenvalues αt2 and βt. Notice that αt2′ values are always complex. The relations
between the coefficients in Eqs. (51) and (52), or Eqs. (54) and (55) are given by (Huang, 1961):

C ′1 =
α2
t1 + b2s2

αt1L
C1, C ′2 =

α2
t1 + b2s2

αt1L
C2, C ′3 = −β

2
t − b2s2

βtL
C3, and C ′4 =

β2
t − b2s2

βtL
C4, (57)

C1
′

= −α
2
t2 − b2s2

αt1L
C1, C2

′
=
α2
t2 − b2s2

αt2L
C2, C3

′
= −β

2
t − b2s2

βtL
C3, and C4

′
=
β2
t − b2s2

βtL
C4. (58)

Table 5: Frequency equations of Timoshenko model.
frequency equation (b < bcrit)

c-c 2− 2cosh(αt1)cos(βt) +
b(b2s2(r2 − s2)2 + (3s2 − r2))√

1− b2r2s2
sinh(αt1)sin(βt) = 0

h-h sin(βt)sinh(αt1) = 0

f-f 2− 2cosh(αt1)cos(βt) +
b(b2r2(r2 − s2)2 + (3r2 − s2))√

1− b2r2s2
sinh(αt1)sin(βt) = 0

c-f 2 + (b2(r2 − s2)2 + 2)cosh(αt1)cos(βt)−
b(r2 + s2)√
1− b2r2s2

sinh(αt1)sin(βt) = 0

frequency equation (b > bcrit)

c-c 2− 2cos(αt2)cos(βt) +
b(b2s2(r2 − s2)2 + (3s2 − r2))√

b2r2s2 − 1
sin(αt2)sin(βt) = 0

h-h sin(αt2)sin(βt) = 0

f-f 2− 2cos(αt2)cos(βt) +
b(b2r2(r2 − s2)2 + (3r2 − s2))√

b2r2s2 − 1
sin(αt2)sin(βt) = 0

c-f 2 + (b2(r2 − s2)2 + 2)cos(αt2)cos(βt)−
b(r2 + s2)√
b2r2s2 − 1

sin(αt2)sin(βt) = 0

Timoshenko model have two pair of frequency equations for each classic boundary conditions. Frequency equations
when b < bcrit and b > bcrit are presented in Tab. 5 for clamped-clamped ( c-c ), hinged-hinged ( h-h ), free-free ( f-f ), and
clamped-free ( c-f ) boundary conditions. Note that as r and s approaches zero, the frequency equations presented in Tab.
5 becomes identical to that of Tab. 1 and bcrit approaches infinity. It can be observed in Eq. (5) that if bcrit approaches
infinity, ωcrit can no longer be defined, in fact ωcrit only appears if both rotatory inertia and shear deformation effects are
considered. The natural frequency ω is written in terms of two eigenvalues (αt1 and βt or αt2 and βt ) as follows (Huang,
1961):

ωi =

√
β2
t − α2

t1

2π
√
r2 + s2

√(
EI

ρAL4

)
with i = 1, 2, ..., n. when b < bcrit, (59)

ωi =

√
β2
t + α2

t2

2π
√
r2 + s2

√(
EI

ρAL4

)
with i = 1, 2, ..., n. when b > bcrit. (60)
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Substituting Eq. (8) into Eq. (44), the dispersion relationship for Timoshenko beam is given by:

f2 =
KG

2ρ2I

ρA+ ρIk2 +
ρEI

KG
k2 ±

√(
−ρA− ρIk2 − ρEI

KG
k2
)2

− 4EIk4
ρ2I

KG

 . (61)

Due to both shear distortion and rotatory inertia effects, the phase speed c and group velocity cg presented in Eq. (12)
become:

c =

√√√√√ KG

2ρ2Ik2

ρA+ ρIk2 +
ρEI

KG
k2 ±

√(
−ρA− ρIk2 − ρEI

KG
k2
)2

− 4EIk4
ρ2I

KG

, (62)

cg =
1

2c

KG

ρ2I

ρI +
ρEI

KG
±

(
ρI +

ρEI

KG

)
ρA+

((
ρI +

ρEI

KG

)2

+
4Eρ2I2

KG

)
k2√(

−ρA−
(
ρI +

ρEI

KG

)
k2
)2

− 4Eρ2I2

KG
k4

 . (63)

6. NUMERICAL RESULTS

Solutions of frequency equations given in Tabs. 1, 2, 4 and 5 are presented as a continuous function of r or s. In
order to solve frequency equations was used the False Position root finding method. Results for clamped-clamped beam
are shown in Figs. 1 and 2, similar plots are given in Han et al. (1999). Figure 1 presents the first four Rayleigh and
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Figure 1: Eigenvalues and frequency curves for clamped-clamped Rayleigh and Shear beam.

Shear eigenvalues and natural frequencies as functions of r and s respectively. The four solid lines are the first four Euler-
Bernoulli eigenvalues ( βe ), observe that they are not affected by parameters r and s unlike the pairs: αr and βr, and αs
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and βs. Note that besides Euler-Bernoulli theory predicts a linear increasing to frequencies values as given parameters
increases, Rayleigh and Shear theories are very similar to classical model for slender beams. However, frequency curves
in Fig. 1 shows that, as r or s increases, shear deformation effect predicts better results than rotatory inertia. The proper
way to represent the eigenvalues on Timoshenko model is to make a three-dimensional plot of αt and βt as functions of
r and s simultaneously. However, due to the eigenvalues plots of previous beam models could only be presented in two-
dimensional plot, Timoshenko eigenvalues and frequency curves are plotted as functions of r by relating the parameters
using Eq. 33. Consider a clamped-clamped beam made of steel whose properties are given in Tab. 6 (Han et al., 1999) .

Table 6: Properties of the beam.

E (Gpa) G (Gpa) ρ (Kg/m3) A (m2) I (m4) K L (m) λ =
√
E/(KG)

200 77.5 7830 0.0097389 0.0001171 0.53066 1 2.205

Timoshenko eigenvalues and frequency curves are plotted for λ = 2.205 in Fig. 2.
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Figure 2: Eigenvalues and frequency curves for clamped-clamped Timoshenko beam.

Figure 2 presents eigenvalues and frequency to b < bcrit ( Eqs. (53 ) and (59) ) and b > bcrit ( Eqs. (56) and (60) ).
The case b = bcrit has been discussed by Levinson and Cooke (1982) who identifies the motion for this case as a shear
oscillation without transverse deflection. When b = bcrit , αt1 and αt2 are equal to zero, and βt = βcrit as shown in Fig.
2. It is interesting to observe that eigenvalues curves were plotted with four line styles to shown that for b > bcrit, αt and
βt third ( dashed-dashed ) and fourth ( solid-line ) curves do not cross each other. Frequency curves were also plotted with
four line styles to shown that third ( dashed-dashed ) and fourth ( solid-line ) curves do not cross each other.

Although longitudinal and transverse velocity of waves are given by Eq. 10, the propagation of waves in a bounded
elastic medium are slower and expressed with a different nomenclature: stress waves and shear waves. Stress waves
propagates as compressional waves with the velocity vl while shear waves propagates as transverse waves with the velocity
vt given by (Smith, 2008):

vl =

√
E

ρ
and vt =

√
KG

ρ
. (64)

A comparison of the presented beam theories in terms of phase speed and group velocity are presented in Fig. 3 using
the values given in Tab. 6. Phase speed and group velocity are plotted in function of k. Note that for higher wave numbers
Shear and Rayleigh model approaches the shear and stress wave speed respectively, while as observed by Rayleigh Euler-
Bernoulli model approaches infinity. However, due to both assumptions for rotatory inertia and shear deformation effects,
only Timoshenko theory is able to predict two waves propagating in a beam.

7. CONCLUSION

This paper discusses the effects of rotatory inertia and shear deformation on beam theory. Frequency equations,
phase speed and group velocity were obtained for classic boundary conditions. The differences between these effects
were discussed by analysis of natural frequency and wave propagation results for slender and non-slender beams. It
was observed that critical frequency occurs only on Timoshenko beam theory, due to both effects inclusion, and that
eigenvalues turns to complex values for frequencies above critical frequency. The consequences for neglecting both
effects on a beam was discussed and it was confirmed that Euler-Bernoulli model was inadequate for higher modes
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Figure 3: Phase speed and group velocity of a beam.

and thick beams. Also a brief review of researchers improvements along the centuries since Euler-Bernoulli model was
published were presented. It was observed on a numerical example that shear deformation effect predicts better results
than rotatory inertia for non-slender beams, although their results are very similar to classical theory for slender beams.
However, a major improvement is obtained by the addiction of both effects on Euler-Bernoulli theory.
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