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Abstract. Beams are structural elements frequently used for support buildings, part of airplanes, ships, rotor blades and
most engineering structures. In many projects it is assumed that these elements are subjected only to static loads, how-
ever dynamic loads induce vibrations, which changes the values of stresses and strains. Furthermore, these mechanical
phenomenon cause noise, instabilities and may also develop resonance, which improves deflections and failure. Therefore
study these structural behavior is fundamental in order to prevent the effects of vibration. The mechanical behavior of
these structural elements may be described by differential equations, four widely used beam theories are Euler-Bernouli,
Rayleigh, Shear and Timoshenko. This paper presents a comparison between these four beam theories for the free trans-
verse vibration of uniform beam. Numerical examples are shown to beam models under classical boundary condition.

Keywords: Euler-Bernoulli, Timoshenko, Rayleigh, Shear, Free Vibration

1. INTRODUCTION

In the Euler-Bernoulli theory (Euler and Bousquet, 1744) , sometimes called the classical beam theory, of flexural
vibrations of beams, the effects of rotatory inertia and shear are neglected. The equations obtained on these assumptions
are adequate for relatively slender beams of lower modes (Wang, 1970). However, the Euler-Bernoulli beam theory tends
to slightly overestimate the natural frequencies. It can be considered inadequate for those beams when the effect of the
cross-sectional dimensions on frequencies cannot be neglected. The prediction is better for slender beams.

The Shear model (Han et al., 1999) adds shear distortion to the Euler-Bernoulli model.This model is different from the
pure shear model which includes the shear distortion and rotary inertia only or the simple shear beam which includes the
shear distortion and lateral displacement only. By adding shear distortion to the Euler-Bernoulli beam, the estimate of the
natural frequencies improves considerably. Neither the pure shear nor the model fits our purpose of obtaining an improved
model to the Euler model because both exclude the most important factor, the bending effect. The Rayleigh beam theory
(Rayleigh, 1894) provides a marginal improvement on the classical beam theory by including the effect of rotation of the
cross-section. As a result, it partially corrects the overestimation of natural frequencies Euler-Bernoulli model. However,
the natural frequencies are still overestimated. Timoshenko (Timoshenko, 1921) extend this to include the effect of shear
as well as the effect of rotation to the Euler-Bernoulli beam. The Timoshenko model is a major improvement for non-
slender beams and for high-frequency responses where shear or rotatory effects are not negligible. Several authors have
obtained the frequency equations and the mode shapes for various boundary conditions. Some are Han et al. (1999), Grant
(1978), Huang (1961).

In this paper, the partial differential equation of motion for each model is solved in full obtaining the frequency
equations for each end condition, the solutions of these frequency equations in terms of dimensionless wave numbers, the
orthogonality conditions among the eigenfunctions, and the procedure to obtain the full solution to the non-homogeneous
initial-boundary-value problem using the method of Eigenfunction Expansion (Meirovitch, 2001). A numerical example
is shown for non-slender beam to signify the differences among the four beam models.

2. EULER-BERNOULLI BEAM MODEL

The governing partial differential equation of motion for free-vibration system is given by (Rao, 2011):

EI
∂4v(x, t)

∂x4
+ ρA

∂2v(x, t)

∂t2
= 0, (1)

where ρ is the mass per unit volume, A is the cross-sectional area, E is the modulus of elasticity, I the moment of inertia
of the cross-section and v(x, t) is the transverse deflection at the axial location x and time t. The equation of motion,
boundary conditions, and initial conditions form an initial-boundary-value problem which can be solved using methods
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of separation of variables and eigenfunction expansion (Han et al., 1999). By separating v(x, t) into two functions such
that v(x, t) = V (x)× T (t), the Eq. (1) can be expressed as:

c2 × 1

V (x)

∂4V (x)

∂x4
= − 1

T (t)

∂2T (t)

∂t2
, (2)

where c =
√
EI/(ρA), and V (x) is known as the modal shapes of beam. The solutions of T (t) and V (x) can be

expressed as follows:

T (t) = At × cos(ωt− θ), (3)

V (x) = C1sin(βx) + C2cos(βx) + C3sinh(βx) + C4cosh(βx). (4)

Function V (x) is know as the normal mode or characteristic function of the beam. At is constant, θ is the phase angle,
C1, C2, C3 and C4, in each case, are different constants, which can be found from the boundary conditions. ω is the
natural frequency and can be computed as:

ω =
(βL)2c

L2
and β = 2

√
ω

c
. (5)

For suppress Cn is necessary to normalize the vector modal shapes. The process of rendering the amplitude of a mode
to be unique is called normalization, and the resulting modes, are called normal modes (Craig, 1981).

3. TIMOSHENKO BEAM MODEL

The governing coupled differential equations for transverse vibrations of Timoshenko beams are (Timoshenko, 1921):

EI
∂4v

∂x4
+ ρA

∂2v

∂t2
− ρEI

kG

∂4v

∂x2t2
− ρI ∂4v

∂x2t2
+
ρI2

kG

∂4v

∂t4
= 0, (6)

EI
∂4ψ

∂x4
+ ρA

∂2ψ

∂t2
− ρEI

kG

∂4ψ

∂x2t2
− ρI ∂4ψ

∂x2t2
+
ρI2

kG

∂4ψ

∂t4
= 0, (7)

in which E is the modulus of elasticity, I , the moment of inertia of cross section, k, the shear coefficient, A, the cross-
sectional area, G, the modulus of rigidity, ρ the mass per unit volume, v, the transverse deflection, and ψ the bending
slope. Assume that the beam is excited harmonically with a frequency f and

v(x, t) = V (x)ejft, ψ(x, t) = Ψ(x)ejft and ξ = x/L, (8)

where j =
√
−1, ξ is the non-dimensional length of the beam, V (x) is normal function of v(x), Ψ(x) is normal function

of ψ, and L, the length of the beam. Substituting the above relations into Eq. (6) and Eq. (7) through Eq. (8) and omitting
the common term ejft, the following equations are obtained

d4V

dξ4
+ b2(r2 + s2)

d2V

dξ2
− b2(1− b2r2s2)V = 0, (9)

d4Ψ

dξ4
+ b2(r2 + s2)

d2Ψ

dξ2
− b2(1− b2r2s2)Ψ = 0, (10)

where

b2 =
ρAL4

EI
f2 with f = 2πω, (11)

where f is angular frequency, and ω, the natural frequency, and

r2 =
I

AL2
and s2 =

EI

kAGL2
, (12)

are coefficients related with the effect of rotatory inertia and shear deformation. The solutions of equations Eq. (9) and
Eq. (10) may be written as Huang (1961):

V (ξ) = C1cosh(bαξ) + C2sinh(bαξ) + C3cos(bβξ) + C4sin(bβξ), (13)

Ψ(ξ) = C ′
1sinh(bαξ) + C ′

2cosh(bαξ) + C ′
3sin(bβξ) + C ′

4cos(bβξ), (14)

where the function V (ξ) is know as the normal mode of the beam, Ci and C ′
i, with i = 1, 2, 3, 4, are coefficients which

can be found from boundary conditions, and α and β are coefficients given as:

α =
1√
2

√
−(r2 + s2) +

√
(r2 − s2)2 +

4

b2
and β =

1√
2

√
(r2 + s2) +

√
(r2 − s2)2 +

4

b2
. (15)
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4. RAYLEIGH BEAM MODEL

As mentioned before, Rayleigh beam model adds the rotatory inertia effect to Euler-Bernoulli beam. For free vibration,
the equation of motion can be expressed as (Han et al., 1999):

EI
∂4v

∂x4
+ ρA

∂2v

∂t2
− ρI ∂4v

∂x2t2
= 0. (16)

Adopting the same procedure as before , we obtain the following vibration mode:

V (x) = C1cosh(bαx) + C2sinh(bαx) + C3cos(bβx) + C4sin(bβx), (17)

where

α =
1√
2

√
−(r2) +

√
r4 +

4

b2
and β =

1√
2

√
(r2) +

√
r4 +

4

b2
. (18)

5. THE SHEAR BEAM MODEL

Shear beam model adds the the effect of shear distortion to the Euler-Bernoulli model. Unlike in the Euler-Bernoulli
and Rayleigh beam models, there are two dependent variables for the shear beam. The equations of motion, are given by
(Han et al., 1999):

EI
∂4v

∂x4
+ ρA

∂2v

∂t2
− ρEI

kG

∂4v

∂x2t2
= 0, (19)

EI
∂4ψ

∂x4
+ ρA

∂2ψ

∂t2
− ρEI

kG

∂4ψ

∂x2t2
= 0. (20)

Adopting the same procedure as before , we obtain the following vibration mode:

V (x) = C1cosh(bαx) + C2sinh(bαx) + C3cos(bβx) + C4sin(bβx), (21)

Ψ(x) = C ′
1sinh(bαx) + C ′

2cosh(bαx) + C ′
3sin(bβx) + C ′

4cos(bβx), (22)

where

α =
1√
2

√
−(s2) +

√
s4 +

4

b2
and β =

1√
2

√
(s2) +

√
s4 +

4

b2
. (23)

6. FREQUENCY EQUATION

The application of appropriate boundary conditions and relations of integration constants to equations Eq. (13) and
Eq. (14) yields for each type of beam a set four homogeneous linear algebraic equations in four constants C1 to C4 with
without primes (Stephen, 1980). In order that solution other than zero may exist the determinant of the coefficients C4

must be equal to zero. This leads to the frequency equation in each case from which the natural frequencies can be
determined. In this paper two cases to be considered: clamped-free and clamped-clamped. The necessary and sufficient
boundary conditions for the beams are found as follows:

Clamped end: V = 0,
dΨ

dx
= 0; (24)

Free end:
dΨ

dx
= 0,

1

L

dV

dx
−Ψ = 0. (25)

The frequency equations for clamped-clamped and clamped-free are as follows:

Clamped-free beam: 2 +
[
b2(r2 − s2) + 2

]
cosh(bα)cos(bβ)

− b(r2 + s2)

(1− b2r2s2)1/2
sinh(bα)sin(bβ) = 0, (26)

Clamped-clamped beam: 2− 2cosh(bα)cos(bβ) +
b

(1− b2r2s2)1/2[
b2s2(r2 − s2)2 + (3s2 − r2)

]
sinh(bα)sin(bβ) = 0. (27)
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7. NUMERICAL RESULTS

7.1 Clamped-clamped Beam

Consider a non-slender clamped-clamped beam showed in Fig (1) with H/L = 0.277128, and L = 1m . The
values of bi(i = 1, 2, 3, ...) can be found from the appropriate frequency equations and then the natural frequencies
ωi(i = 1, 2, 3, ...) can be found from Eq. (11). These frequency equations are highly transcendental and are solved
using Newton-Raphson method (Pradhan (2012), Pradhan and Mandal (2013), Gunda et al. (2009)) for various types of
beams and various combinations of r and s. The values of bi obtanied by Eq. (11) are presented in Table (1) for the first
four eigenvalues and the Figs. (2 - 3) shows the graphics of the first and third modes of vibrations related to transverse
displacement and Figs. (4 - 5 ) presents complete rotation of a clamped-clamped beam for a set of parameters r and s
as indicated in Table (1). Note that the amplitude of the vibration mode decreases with increasing rotational inertia and
shear deformation.

L

H

Figure 1. Clamped-clamped beam

Table 1. bi eigenvalues for clamped-clamped Timoshenko beam

r s b1 b2 b3 b4
0 0 22.3733 61.6728 120.9034 199.8594

0.008 0.01399 22.2571 60.9390 118.3995 193.5505
0.04 0.0699 19.9419 48.8884 85.1489 125.5022
0.08 0.1399 15.7415 33.8419 54.8373 76.6488
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Figure 2. First modal shapes for clamped-clamped beam
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Figure 3. Third modal shapes for clamped-clamped beam
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Figure 4. First modal shapes due to complete rotation
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Figure 5. Third modal shapes due to complete rotation

Note that Timoshenko beam theory included the effect of rotatory inertia and transverse-shear deformation, and also
these terms are isolated on coefficients r and s. When one or both of these constants are equal zero, it’s obtained the
equation of motion of previous beam theories. Euler-Bernoulli beam theory equation of motion can be expressed by
develop of Eq. (9) with coefficients r = s = 0. Rayleigh and Shear beans theory can also be expressed with coefficients
s = 0 and r = 0 respectively. The first four eigenvalues bi for beams theories presented are showed in the Table (2).

Table 2. bi eigenvalues for clamped-clamped beam

Beam Model r s b1 b2 b3 b4
Euler-Bernoulli 0 0 22.3733 61.6728 120.9034 199.1768

Rayleigh 0.08 0 21.5399 54.1743 94.5919 137.9945
Shear 0 0.1399 15.9004 34.8350 56.8180 79.8545

Timoshenko 0.08 0.1399 15.7415 33.8419 54.8373 76.6488
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Figure 6. First modal shapes for clamped-clamped beam
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Figure 7. Second modal shapes for clamped-clamped beam
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Figure 8. Third modal shapes for clamped-clamped beam
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Figure 9. Fourth modal shapes for clamped-clamped beam

7.2 Clamped-free Beam

For a non-slender clamped-free beam showed in the Fig (10), with H/L = 0.277128, and L = 1m. The values of bi
obtained by Eq. (11) are presented in Table (3) for the first four eigenvalues some combinations of r and s. The Figs. (11
- 14) shows the graphics of the first four models of vibrations related to transverse displacement for a set of parameters r
and s as indicated in Table (3). Note that the amplitude of the vibration mode decreases with increasing rotational inertia
and shear deformation.

L

H

Figure 10. Clamped-free beam
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Table 3. bi eigenvalues for clamped-free beam

Beam Model r s b1 b2 b3 b4
Euler-Bernoulli 0 0 3.5160 22.0345 61.6972 120.9019

Rayleigh 0.08 0 3.4648 20.0449 50.5283 87.7103
Shear 0 0.1399 3.3654 17.2235 39.3686 63.2530

Timoshenko 0.08 0.1399 3.3241 16.2897 36.7098 58.2826
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Figure 11. First modal shapes for clamped-free beam
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Figure 12. Second modal shapes for clamped-free beam
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Figure 13. Third modal shapes for clamped-free beam
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Figure 14. Fourth modal shapes for clamped-free beam

8. CONCLUSION

This paper, four approximate models for a transversely vibrating beam was presented: Euler-Bernoulli, Rayleigh,
Shear and Timoshenko models. The equation of motion and the boundary conditions were obtained. For a given beam
with r and s known the non-dimensional frequencies bi(i = 1, 2, 3, ...) can be found from the appropriate frequency
equations or natural frequencies. The frequency equations are not simply due to their highly transcendental nature, but
they can be solved numerically by using a Newton-Raphson root finding method. It was observed that the amplitude of
the vibration mode decreases with increasing rotational inertia and shear deformation.
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